How Pauli-Villars’ regularization tells the
Nambu-Goto and Polyakov strings apart

Yuri Makeenko (ITEP, Moscow)

Y. M. arXiv:2204.10205 [hep-th]

J. Ambjgrn, Y. M. MPLA 36, 2150136 (2021) [arXiv:2103.10259]

Y. M. Nucl. Phys. B 967, 115398 (2021) [arXiv:2102.04753 [hep-th]]

Y. M. JHEP 07, 104 (2018) [arXiv:1802.07541]

J. Ambjgrn, Y. M.

J. Ambjgrn, Y. M
J. Ambjgrn, Y. M
J. Ambjgrn, Y. M
M

J. Ambjgrn, Y.

IJMPA 32, 1750187 (2017) [arXiv:1709.00995]

. Phys. Rev. D 96, 086024 (2017) [arXiv:1704.03059]
. Phys. Lett. B 770, 352 (2017) [arXiv:1703.05382]
. Phys. Lett. B 756, 142 (2016) [arXiv:1601.00540]

. Phys. Rev. D 93, 066007 (2016) [arXiv:1510.03390]



Content of the talk

e effective string philosophy
invariant cutoff |AZ,/g

e mean-field solution of regularized bosonic string
the Alvarez-Arvis spectrum
the Lilliputian scaling limit

e instability of the classical vacuum for d > 2
stability of the mean-field vacuum for 2 < d < 26

e systematic expansion about the mean field
Pauli-Villars' regularization
Theorem about cancellation of infrared divergences

e the beyond Liouville action
integrating the Lagrange multiplier Aab
the energy-momentum tensor
DDK computation of conformal weight and the central charge
R?2 versus minimal Polyakov's string
difference between the Nambu-Goto and Polyakov strings
cancellation of logs at one and two loops



1. Introduction



Problems of string theory

inherited from 1980's

e Non-perturbative lattice regularization (by dynamical triangulation)
scales to a continuum string for d < 1 but does not ford > 1
(same for hypercubic latticization of Nambu-Goto string in d > 2)

Durhuus, Frohlich, Jonsson (1984), Ambjgrn, Durhuus (1987)

® Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989)

string susceptibility index of (closed) Polyakov string is not real
for 1 <d< 25

d—25—/(d—1)(d - 25)
12

Ystr — (1 — h)

-+ 2 genus h




Philosophy of effective string

String is formed by more fundamental constituents
Effective or induced or emergent string makes sense when it is long
Examples:
Abrikosov vortices in superconductor
Nielsen-Olesen string in the Higgs model
in QCD
In particular no tachyon for 8 > Btacnyon

Pretty much like the view on Quantum Electrodynamics



2. Mean-field vacuum of
bosonic string



Nambu-Goto string via Lagrange multiplier

Lagrange multiplier A% for independent metric tensor Pab

K
KO/de Jdeta, X - 9, x = KO/de ,0—|—70/ d2w A (8 X - X — pop)

World-sheet parameters wi,ws € wy, X wg rectangle

Closed bosonic string winding once around dimension of
length 8, propagating (Euclidean) time L (cylinder or torus).
No tachyon if g is

Classical solution

L p
- L2 52
[Pablci = diag (ajz wz) N = p&v/pa
L =g
minimizes the Nambu-Goto action (a classical vacuum)
L
Conformal gauge if YL _Z then /\g? — §ab

“B



Induced (or emergent) action
Gaussian path integral over X§ by splitting X# = X1 4 X§:
Ko
Sind = Ko/dQW Vo + 7/0'260 X (8aXcl - OpXel — Pab)

d 1
+—trlog O, O = —— 9,20,
2 VP

Operator O reproduces the Laplacian A for A% = p@b,/detp

Additional ghost determinant in the conformal gauge p,;, = pd

1 1
~triog (—AZ + - (Aglog p))

Induced (or emergent) action coincides with effective action for smooth
fields

2D determinants diverge and has to be regularized



Regularization of determinants

Proper-time regularization of the trace

codr, _ 1
triog Oleq = _/a2 —tre O N2 = yr—

Pauli-Villars regularization of the trace Ambjgrn, Y.M. (2017)

_ det(O) det(O 4+ 2M?2)
det(O)lreg = det(O + M?2)2

2

oo d 2\ 2 M
triog Oleq = _/o %tre_To (1 —e ™ ) , N2 = Elog 2.

iIs convergent as finite reqgulator mass M and divergent as M — oo.

For Pauli-Villars regularization beautiful diagrammatic technique and
det's can be exactly computed for certain metrics by the Gel'fand-
Yaglom technique to compare with the Seeley expansion

1 1 R
e—TO — O
<w| |w> A7t \/det \eb + 241 +0()

which starts with the term 1/7 in 2 dimensions. For 7 ~ 1/A? higher
terms are suppressed as R/A2 only for smooth fields but revive if not



Mean-field vacuum
Ambjgrn, Y.M. (2017)

The result for and A = X§% and p,p = poyp
Ko~ (L% 2 .
Seff = 5 A ( 5+ 2) wrwg + Ko(1 — A)pwrwg
A
d d—2
—(—_—1) /\Q,EwLwﬁ—ﬂ( )WL
2 $) wg

for L > B omitting the boundary terms.
The minimum is reached at (quantum vacuum)
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Mean-field vacuum (cont.)

The approximation describes a mean field which takes into account
an infinite set of pertubative diagrams about the classical vacuum.
Then A% and p,;, do not fluctuate which becomes exact at large d.

It is like 2d O(N) sigma-model at large N where the Lagrange multi-
plier does not fluctuate (summing the bubble graphs). The large-N
vacuum is very closed to the physical vacuum even for N = 3.

The minimization over wg/wy, is also needed at the saddle point.

The square root is well-defined if

Ko > Ky« = (d— 1+ \/d2—2d> A2 P20 2GA2

Perturbation theory is recovered by expanding in 1/Kg ~ h. Then A
ranges between 1 (classical) and ( ) value

| 1
A*zi(d—\/d2—2d> di>°°5




3. Two scaling regimes:
Gulliver’s vs. Lilliputian



Lattice-like scaling limit (Gulliver’s)

The ground state energy (Alvarez-Arvis)

m(d — 2)
3K\

does not scale because Kg > Ky« ~ A2 for X to be real (> X). Let
B2 > Biin =

d— 2 - 1
md ~ 2) A*za(d—\/d2—2d>
for not to have a tachyon.

3Kshs
Choose the smallest possible value 8 = Bmin

KoX
A

Eo(8) = KOT\\/BQ —

EO(ﬁ) A — A

which scales to m if

- m2 m4

The scaling does not exist for excited states (larger values of 3) and
thus is similar to lattice regularizations of a string, where
only the lowest mass scales to finite, excitations scale to infinity

Durhuus, Frohlich, Jonsson (1984), Ambjgrn, Durhuus (1987)



Lattice-like scaling limit (Gulliver’s)

The ground state energy

(_W(d —2)

2 o)

does not scale because Kg > Ky« ~ A2 for X to be real (> X). Let
B2 > Binin =

d— 2 — 1
md — 2) >\*=§<d—\/d2—2d>
for not to have a tachyon.

3Kshs
Choose the smallest possible value 8 = Bmin

KoX

A A — A«

Eg(B) o

which scales to m if

- m2 m4

The scaling does not exist for excited states (larger values of 3) and
thus is similar to lattice regularizations of a string, where
only the lowest mass scales to finite, excitations scale to infinity

Durhuus, Frohlich, Jonsson (1984), Ambjgrn, Durhuus (1987)



Lilliputian string-like scaling limit

Let us “renormalize’” the units of length

X —
L = /== L — |\ =—

to obtain for the effective action

wd _
Smf = KR LR\/BJ%—?, Kp = Ko(A — Ax)
R

The renormalized string tension Kpg scales to finite if

K2
Ko — Ki«+ i , K*:<d—1—|—\/d2—2d)/\2
2A2\/d? — 2d

reproducing the Alvarez-Arvis spectrum of continuum string.
The average area is also finite

2 md )
6KR

WR 5
= minimal area for 8% > nd/(3Kg) and diverges if 8% — 7d/(3KR)

(Area) = Lp




Lilliputian string-like scaling limit (cont.)

It looks like for the zeta-function regularization, but

— T
A\

— Ay

length = X lengthp

lengthp

in target space which is of order of the cutoff (= Lilliputian)

Nevertheless, the cutoff (in parameter space) |Aw = 1/(A{/g)| fixes
maximal number of modes in the mode expansion

m,n>0

“+bmn SiN
“B “B

Y

2Tmwo 2Tmwo cin TNnwi
wr,
to be

1 2
nrgngx ~ N{gwr, ngngx ~ /\%WB

Classically  {/gwg = reproducing Brink-Nielsen (1973)
A 6 VEKop

V9w X ———— =
VA — Ak vVEKpr

—= classical music can be played on the Lilliputian strings

iIs much larger



T he Lilliputian world

The Lilliputian world is of the size of the target-space cutoff

It is still a continuum because infinitely smaller distances can be
resolved (infinitely many stringy modes)

The Lilliputian scaling regime is perfectly recovered by results of
the zeta-function regularization

Linear Regge trajectories signalize about the Lilliputian world

Gulliver’'s tools are too coarse to resolve the Lilliputian world
(this is why lattice string regularizations of 1980's never reproduce
canonical quantization)
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4. Instability of classical vacuum



Semiclassical energy
Brink, Nielsen (1973)

Semiclassical (or one-loop) correction due to zero-point fluctuations
(d —2) w(d —2)L
65

Sy = [KO — /\2] LB —

To make it finite, it is introduced the renormalized string tension

(d— 2)/\2

2
which is kept finite as A — oco. Then it is assumed that it works order
by order of the perturbative expansion about the classical vacuum, so
that Kpr can be made finite by fine tuning Kjy.

Kr = Ko —

We see however from the mean-field formula

_ d—2)
S = Ko g2 ™=
mf 0 \//3 3K

that Smpr never vanishes with changing Kgy (except ...).
Thus the one-loop correction simply lowers for d > 2 the energy of
the classical vacuum state which may indicate its instability.




Effective potential

To investigate stability of the vacuum, add the source term like in
QFT

K .
Ssrc = 7O/d2w ]abpab

defining the field

2 0

)= ————1log Z.
Pab(J) o5 9

Minimizing for constant j% = 5% we find

1 A2 1 COA2\? dAZ?
A(J)—2<1+]+[(O>+J4<1+]+[<O> —2—[<O

2
1 144+ 2 _ N2 [ 5
p(j) = = + Ko Xp) = P
2 . N2 2 2dNA2 2KO 10_1
(1+J+K—o) ~ Ko

in the mean field approximation for wy, = L and wg = > 1/ Ky,




Effective potential (cont.)

“Effective potential” is given by the Legendre transformation

[[(p) = — log Z — j(p)p
(p) KoL 9 i(p)p
In the mean-field approximation
N2 2dA2 i ,//////
I_ N p— 1 _— _— __—1 ;“‘1.M‘_1‘,4/1.6“‘118”‘2‘.0
@ =(1+5 )5 J (- 1)
Classical vacuum p =1 is unstable and a stable minimum occurs at
/\2
_ 1 1+ %
p(0) = + 0

2
A2 2dN?
2 (14+42) - 2

if Ko > K« (same value as before for 5> 1//Kp).

Near the minimum
2
N2 2dN?
(1+%) -

_ A2\%  2dA2
P = K”K) Tk Ko) K
0 0 0 0

1/2
L
2dN\2

3/2

[7 — p(0)]?



String susceptibility

Entropy of surfaces of the area A
<5(1) (/p _ A)> A0 fastr—2 oCA

Passage from grand canonical to canonical ensemble at fixed area A.

(1)< _ ): 45 ja—j[p
0 /,0 A /TQWie

we identify 5 with the source above.

Representing

Expanding about the saddle point Ambjgrn, Y.M. (2017), (2021)

Jo = XG) = T () + 272 [l — DIP/? (83))?

—— Helmholtz free energy in the mean-field approximation

F = KOLBI‘(%) + % log [;3 (LA% — 1)] -+ const.




5. Stability of mean-field vacuum



Coleman-Weinberg potential

Integrating out X(’j we get (a part of) the effective action

d 1
—trin [——aa/\abab] —
2 P reg

wavy lines correspond to fluctuations S\ or dp about ground state

A(w) = X6 4617, p(w) = p+ dp
Positively definite quadratic form for imaginary A% and real dp

dN2p dA2\ 5% dA25 [§aaa)?
v Y 2 233 | 2

Ao = —(5A11—5>\22) + —(5>\12)

Polyakov's book: typical A ~ 1/A so A\ is |ocalized and decouples.
Thus only p fluctuates (stable for 2 < d < 26)

The private life occurs at distances ~ A—1 but is observable Y.M. (2021)



6. Fluctuations about mean field



Expansion about the mean field

For 2 < d < 26 define the partition function
Z[bo] = / Dp e~ Sinc

b% = 6/(26 — d) controls a ‘“‘semiclassical” expansion about the mean
field which plays the role of a ‘‘classical” vacuum as b% — 0.

Like 1/N expansion in the sigma model)

(ghosts differ the situation from the sigma model)

Massive determinants of Pauli-Villars' regulators (ghost statistics)
5‘ d/2 Ko 2 N sab 2
det (——62 + M2> = /DYA‘} o~ ) dw (A8 Y p O Y+ M= pYpr- Yy )

contribute to the energy-momentum tensor

T(2) =Ty, = 2nKgA0:X - 0. X + ghosts + regulators

Regulators explicitly interact with the metric p in conformal gauge

(8p(—p)Y{;(k + p)Yi (—k)) = —KoM?5H

truncated



Computation of S

Regularized determinant

d
—trin
2

wavy lines correspond to

o) = 7 (€94 — 1)

Terms of all order in ¢ but tremendous cancellation for smooth ¢:
26 — d

Seff = /8ag08ag0 if R A2

result when quantum fluctuations of ¢ disregarded
In general we expand ¢ = ¢ + @q and average over ¢q

Fiducial metric (R < A?)

ﬁab — 5ab€90d



Path integrating over )\

Simplified quadratic action (A\*?* = 0)

s(2) = / [—bagoﬁgo + v (A=Vp + AFVp) — dA%p e‘P/\ZZ/\ZZ]
7T
0

Integrating out \#? and \??

12

(2) ' ¢ =5
S / _ 47Tb2890 @ + 2pe (Vaw)(vaso)]
2

[ 1
- / 47Tb2 goﬁgo—l—

Integrating by parts

<ane  (0Po = (00?) (o - (B?)

s(2) = L/ {8@59& + 4ee™ % [(859&)2 + 8905908590} } , €= 7”/2[)8
Ah3 dN2p

The second additional term does not appear for Polyakov's string



Beyond Liouville action

Integrating over X#, ghosts, regulators Y#, YH, ZH and \ab

1 2 2 ( bo L 1 )]
— ~R—R+?2 R(R+ Gg®0,—Rdy—R
16wbg/\/§[ At tEmoTa LN

curvature squared R? (Polyakov) 4+ nonlocal G # 0 (Nambu-Goto)
or

S=_ b2 / (00 + “0 ¥ 4 4e e ?(80,)2 — 4Ge e %D pdd,]

in conformal gauge pg, = 6,50 €¥ With worldsheet cutoff e = a?/p and
2 — 2>

Ho — Mpp

Classically extra terms vanishes for smooth eR < 1 but
quartic derivative provides UV cutoff but also interaction with
coupling € = uncertainties ¢ x e~ 1 so they revive quantumly
= produce



Beyond Liouville action (cont.)

Illustration by the Seeley expansion of eOLQA DeWitt (1963)
(wleAw) = = R(w) + -2 (AR@) + S R2@)) +
w w ) — w w — w
47ra2 24 1207 2
Splitting ¢ = ¢ + ¥q and averaging over gq
2 2bg
<gbq(w)8 ¢q(w)>q = -+ less singular
€
2b3
= — 0 g&ci + less singular

a

we get
2

2b
(R(w))q = —3 + less singular,
a

2 2
3631 | 4b

<R2(w)> = =0 4+ 2R (w) + less singular
d T a* a?

giving contribution to conformal anomaly



/. CFT ala KPZ-DDK



Review of KPZ-DDK
Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989)

Liouville action in fiducial (or background) metric g,

1 ~/1._ . ~
St = g 12 / \/; (Egabaaw?b‘ﬂ + qu) + p? / \/;eso

6
26 — d
are ‘“renormalized” parameters of the effective action.
Energy-momentum pseudotensor

b2 = b3 + O(b3), g=1+ O(b3) b2 =

1 >
T(z) = matter + ghosts — 12 <8z<p8zgo — 2q0; go)

Background independence: the total central charge

C]2
d—26—|—1—|—6b—2=0

and the conformal weight
A(ef)=qg—b>=1

»B-d [1-4d ;
— b=/ Y iy —140b
24 24 =1+




Energy-momentum tensor

For minimal coupling to gravitational g,

- 1
— 43T = 9,000 — ~9ab0°POcsp — 11590 — £0apOp NP — 0Oy

g g
+e94p0“P0cAp + Egab(ASO)Q — GedapOpp Ay + Gif?aso@b(@cso@c@

g g
+G-0a(0°p0c0) Oy — Gigabacsoa(;(a%adso)

For diffeomorphism invariant action

i €
—4b5 Ty, = —45371%“ M) _ 2840 — gapd°0c) (p — e + Gggabé’av@b@

1
+2Ge(0a0) — gabacac)zad(c‘?dsoAsO)

It is conserved and traceless (!) thanks to diffeomorphism invariance

—4b3T., = (8p)? — 2e0pdAp — 20°%(p — eAp) — Ge(dp)2 Ay
+4Gedpd( e POpdp) — 4Ged? (e~ Ppdp) + Ged(dpAp)

1 _
+G5562<8¢A¢>



Pauli-Villars’ regulators

Pauli-Villars’ regulators: Grassmann Y, Y (M?2) and normal Z (2M?)

Sreg. = 7= 52 / V3 [§°0aY 8Y + M?Y? + £(AY)? + G=g™*0aY 9,Y R]
or in conformal gauge
1 S M2 oo — ol AV 2 —0avav A5
Sreg. = ) oY oY + Te‘PY + 4 e ¥(00Y ) — 4Ge e YOY IY DOy
7T
0

Conserved and traceless (!) energy-momentum tensor

1 M?
—ap3TY = 9,y 9,y — ~9a0°Y 0cY — = —gupY ? — 0aY AY

—e0, AY BY + £g,,0°Y OcAY + §gab(AY)2 — GedaYBY A
+G%aagpab(acyacm + G%aa(acmcmabgo - G%gabﬁcwﬁc(ﬁdYﬁdY)
—Gg(aa,ab — gabac(%) (8CY86Y)

= conformal invariance expected to be maintained quantumly

—4RRTU®Y = HYIY — 20YHAY — GedY Y Ap + 4Gedpd( e PIYY)
—4Ged? (e oY HY)



DDK revisited

One-loop operator products Ts.(z) e¥(9) and T, (2)T:-(0)

a) l>) c) “l)
Gon T D
(e .
e) H g/ d
O e (D
2) J) v)

Diagrams a) to j) contribute gqa to the conformal weight of e (0)
Diagrams k) contributes —b2a2 to the conformal weight of e#(0)
Additional terms do not contribute as ¢ — 0O, reproducing DDK

qor — b0’ =1



One-loop central charge

Diagrams a) to j) contribute 6q2/b2 to the central charge as usual.
Diagram k) contributes usual 1 to the central charge but
the nonlocal term in T, revives

1 3ls - N5 2Ge 31 2
2 <2G68 589@(z)890(z)890(0)890(0)> (87) a ~(00G(2))
G7T831

2
85< >(z) —3GZ—4,

2. 1_16 <2G683%5<p(z)5g0(z)(—86)8@(0)82590(O)>
— —(8#)24G5283%(85(15(2)8252(;6(2)) R —Gw83%5(2)(z) = 6G—
Z

The second DDK equation is modified (assuming one loop is exact)

2
+1+ ~+6Gg=0 = abz\/

25 —d — 6(Gq \/1—d—|—6Gq
24 24



8. Algebraic check of DDK



One-loop propagator

One-loop propagator {(o(—p)p(p)) for e =0

P " t )
1 s Z “y
[}
AMAAAAAAMA Wnu A/ AAARAAAM

a) L) ¢) J)

by — 1 d%k 2M4
4 (2m)2 (k2 4+ M2)[(k — p)2 + M?]
_ — * ~oen
= the usual conformal anomaly
d?k 2M? 2M? 5 M? 5
_ - = —log?2
— the renormalization of p2 rather than b2.
One-loop renormalization of b2
1 1

1 2
= —— 4+ O




One-loop renormalization of «

One-loop renormalization of e¥(0) — eav(0) for ¢ =0

A

a) L) C) ‘{)

) = _ (#(0)2) = 83 [1o(0) + const.]

because the propagator logarithmically diverges at coinciding points
and the worldsheet cutoff e oc a2 e~ ¥.
Standard one-loop renormalization

a=140b5+ O



One-loop renormalization of 7.,

One-loop renormalization of T,, for e =0 wavy —e¥ — 1
a) b) c)
d) e)
1 d2k 2M?2
A B O e A (IR i) (e Cg Yoy
2M2 2
to(p) — —w(p)

(K2 +2M?)[(k — p)? + 2M?]
Sum of this and the other diagrams

1 1
(TE9) = - 1020 — S (00)% + 0(x®) (1)
Y 12 2
tremendous cancellation of diagrams due to diffeomorphism invariance
q 1

12 b_2__+0(b) = q—l—I—O(b)



9. Cancellation of logs at two loops



Computation of Sé?

OO R C
O G e O

wavy lines are now associated with ¢.
Combinatorics: a) +2b) —4¢c) —d) +e) + f). The result

s(2) _ /a 1:1_1_519 OWR) R =_"°
Oeff 167rb2 wh? 3= 12 76 ) 26 — d
Cancellation of IR divergences ( due to quadratic Seff).

Most important for maintaining conformal invariance.




Computation of Sé‘;’r)

2

%
-
-0

g)

e,

J

~ &,

m) n)

Combinatorics: 3a) + 3b) 6¢c) — 3d) +3¢e) — f) —2g9) +2h) +2i) — j)
+ %k) l) +m) — Qn) 1 0)

Q1
X
¢
-«
-0

@ﬁﬁ:@



Computation of Sé?F) (cont.)

The result (IR divergences again mutually cancel)

3 127
Sed =~ / $0apdap + O(h)
nonvanishing because of quadratic divergences L x A2 =

N2

In covariant notations
(3) . 127
eff o 1607‘(‘

11
/ R--R-R + O(h)

Sefe differs from (massless) Liouville and is not quadratic in ¢
— ¢ cannot be a field (a field redefinition required!).

p(p) = e®¥) S

The measure for path-integration over ® is generically nonlinear
but Jacobian for ¢ — ®(p) is inessential because of no derivatives



CFT consideration

Generically we get to all orders in b% (for g, = 0,p)

1 127b2
= 1 —
— / F()0apdap  f(2) :

which is invariant under modified conformal transformation

52 =€(2)  Sp=——_o¢

v ()

nonlinear like for Polchinski-Strominger = ¢ is not primary

Seff = T

Introducing the new field which is now

dD(go):/(:pda:\/f(a:) D = 9¢

1
S e — —/a D, D
eff 167132 aTrae

where B2 accounts for the Jacobian from ¢ to ® & la DDK

we write

but it is not essential at one loop (Ambjgrn, Y.M., Semenoff unpublished)

Function f(x) may be nonuniversal (regularization dependent) but

results seems to be the same (universality!)



Conclusion

Differences between the Nambu-Goto and Polyakov strings:

e Classical (perturbative) vacuum is stable only for d < 2.
For 2 < d < 26 the mean-field vacuum is stable instead

o for d > 2 versus for d <2

e Gulliver's tools (inherited from QFT) are too coarse to deal with
the Lilliputian scaling regime

e String susceptibility index differs: 1/2 versus 1 for genus one
e Emergent action differs for nonsmooth ¢

e 2D conformal invariance is maintained both classically and by
fluctuations about the ground state (in both cases)

e The one-loop central charge of ¢ gets additional 6G



